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45.3 | Environmental Limits to Population Growth

By the end of this section, you will be able to do the following:
« Explain the characteristics of and differences between exponential and logistic growth patterns
* Give examples of exponential and logistic growth in natural populations

» Describe how natural selection and environmental adaptation led to the evolution of particular life history
patterns

Although life histories describe the way many characteristics of a population (such as their age structure) change
over time in a general way, population ecologists make use of a variety of methods to model population dynamics
mathematically. These more precise models can then be used to accurately describe changes occurring in a
population and better predict future changes. Certain long-accepted models are now being modified or even
abandoned due to their lack of predictive ability, and scholars strive to create effective new models.

Exponential Growth

Charles Darwin, in his theory of natural selection, was greatly influenced by the English clergyman Thomas
Malthus. Malthus published a book in 1798 stating that populations with unlimited natural resources grow very
rapidly, and then population growth decreases as resources become depleted. This accelerating pattern of
increasing population size is called exponential growth.

The best example of exponential growth is seen in bacteria. Bacteria reproduce by prokaryotic fission. This
division takes about an hour for many bacterial species. If 1000 bacteria are placed in a large flask with an
unlimited supply of nutrients (so the nutrients will not become depleted), after an hour, there is one round of
division and each organism divides, resulting in 2000 organisms—an increase of 1000. In another hour, each
of the 2000 organisms will double, producing 4000, an increase of 2000 organisms. After the third hour, there
should be 8000 bacteria in the flask, an increase of 4000 organisms. The important concept of exponential
growth is the accelerating population growth rate—the number of organisms added in each reproductive
generation—that is, it is increasing at a greater and greater rate. After 1 day and 24 of these cycles, the
population would have increased from 1000 to more than 16 billion. When the population size, N, is plotted over
time, a J-shaped growth curve is produced (Figure 45.9).

The bacteria example is not representative of the real world where resources are limited. Furthermore, some
bacteria will die during the experiment and thus not reproduce, lowering the growth rate. Therefore, when
calculating the growth rate of a population, the death rate (D) (number organisms that die during a particular
time interval) is subtracted from the birth rate (B) (number organisms that are born during that interval). This is
shown in the following formula:

AN (change in number)

AT (change in time) = B (birth rate) - D (death rate)

The birth rate is usually expressed on a per capita (for each individual) basis. Thus, B (birth rate) = bN (the per
capita birth rate “b” multiplied by the number of individuals “N”) and D (death rate) = dN (the per capita death
rate “d” multiplied by the number of individuals “N”). Additionally, ecologists are interested in the population at a
particular point in time, an infinitely small time interval. For this reason, the terminology of differential calculus is
used to obtain the “instantaneous” growth rate, replacing the change in number and time with an instant-specific
measurement of number and time.

dN _ —

d—T_bN — dN=(b - d)N
Notice that the “d” associated with the first term refers to the derivative (as the term is used in calculus) and is
different from the death rate, also called “d.” The difference between birth and death rates is further simplified by
substituting the term “r’ (intrinsic rate of increase) for the relationship between birth and death rates:

dN _
dT—rN

The value “r” can be positive, meaning the population is increasing in size; or negative, meaning the population
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is decreasing in size; or zero, where the population’s size is unchanging, a condition known as zero population
growth. A further refinement of the formula recognizes that different species have inherent differences in
their intrinsic rate of increase (often thought of as the potential for reproduction), even under ideal conditions.
Obviously, a bacterium can reproduce more rapidly and have a higher intrinsic rate of growth than a human. The
maximal growth rate for a species is its biotic potential, or rmax, thus changing the equation to:

g_]YY= Tmax N
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Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve.
When resources are limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as
resources become scarce, and it levels off when the carrying capacity of the environment is reached, resulting in an
S-shaped curve.

Logistic Growth

Exponential growth is possible only when infinite natural resources are available; this is not the case in the real
world. Charles Darwin recognized this fact in his description of the “struggle for existence,” which states that
individuals will compete (with members of their own or other species) for limited resources. The successful ones
will survive to pass on their own characteristics and traits (which we know now are transferred by genes) to
the next generation at a greater rate (natural selection). To model the reality of limited resources, population
ecologists developed the logistic growth model.

Carrying Capacity and the Logistic Model

In the real world, with its limited resources, exponential growth cannot continue indefinitely. Exponential growth
may occur in environments where there are few individuals and plentiful resources, but when the number of
individuals gets large enough, resources will be depleted, slowing the growth rate. Eventually, the growth rate
will plateau or level off (Figure 45.9). This population size, which represents the maximum population size that
a particular environment can support, is called the carrying capacity, or K.

The formula we use to calculate logistic growth adds the carrying capacity as a moderating force in the growth
rate. The expression “K — N” indicates how many individuals may be added to a population at a given stage, and
“K — N” divided by “K” is the fraction of the carrying capacity available for further growth. Thus, the exponential
growth model is restricted by this factor to generate the logistic growth equation:

K-N
Z_]Y\{=rmaxfl_]¥=rmax]v—( K )

Notice that when N is very small, (K-N)/K becomes close to K/K or 1, and the right side of the equation reduces
to rmaxN, which means the population is growing exponentially and is not influenced by carrying capacity. On the
other hand, when N is large, (K-N)/K comes close to zero, which means that population growth will be slowed
greatly or even stopped. Thus, population growth is greatly slowed in large populations by the carrying capacity
K. This model also allows for the population of a negative population growth, or a population decline. This occurs
when the number of individuals in the population exceeds the carrying capacity (because the value of (K-N)/K is
negative).

A graph of this equation yields an S-shaped curve (Figure 45.9), and it is a more realistic model of population
growth than exponential growth. There are three different sections to an S-shaped curve. Initially, growth is
exponential because there are few individuals and ample resources available. Then, as resources begin to
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become limited, the growth rate decreases. Finally, growth levels off at the carrying capacity of the environment,
with little change in population size over time.

Role of Intraspecific Competition

The logistic model assumes that every individual within a population will have equal access to resources and,
thus, an equal chance for survival. For plants, the amount of water, sunlight, nutrients, and the space to grow are
the important resources, whereas in animals, important resources include food, water, shelter, nesting space,
and mates.

In the real world, phenotypic variation among individuals within a population means that some individuals will
be better adapted to their environment than others. The resulting competition between population members of
the same species for resources is termed intraspecific competition (intra- = “within”; -specific = “species”).
Intraspecific competition for resources may not affect populations that are well below their carrying
capacity—resources are plentiful and all individuals can obtain what they need. However, as population size
increases, this competition intensifies. In addition, the accumulation of waste products can reduce an
environment’s carrying capacity.

Examples of Logistic Growth

Yeast, a microscopic fungus used to make bread and alcoholic beverages, exhibits the classical S-shaped curve
when grown in a test tube (Figure 45.10a). Its growth levels off as the population depletes the nutrients. In the
real world, however, there are variations to this idealized curve. Examples in wild populations include sheep
and harbor seals (Figure 45.10b). In both examples, the population size exceeds the carrying capacity for short
periods of time and then falls below the carrying capacity afterwards. This fluctuation in population size continues
to occur as the population oscillates around its carrying capacity. Still, even with this oscillation, the logistic model
is confirmed.
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Figure 45.10 (a) Yeast grown in ideal conditions in a test tube show a classical S-shaped logistic growth curve,
whereas (b) a natural population of seals shows real-world fluctuation.

If the major food source of the seals declines due to pollution or overfishing, which of the following would
likely occur?

a. The carrying capacity of seals would decrease, as would the seal population.
b. The carrying capacity of seals would decrease, but the seal population would remain the same.

c. The number of seal deaths would increase but the number of births would also increase, so the
population size would remain the same.

d. The carrying capacity of seals would remain the same, but the population of seals would decrease.
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